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Abstract—As the scale of modern computing systems grows,
failures will happen more frequently. On the way to Exascale
a generic, low-overhead, resilient extension becomes a desired
aptitude of any programming paradigm. In this paper we
explore three additions to a dynamic task-based runtime to
build a generic framework providing soft error resilience to
task-based programming paradigms. The first recovers the
application by re-executing the minimum required sub-DAG,
the second takes critical checkpoints of the data flowing
between tasks to minimize the necessary re-execution, while the
last one takes advantage of algorithmic properties to recover
the data without re-execution. These mechanisms have been
implemented in the PaRSEC task-based runtime framework.
Experimental results validate our approach and quantify the
overhead introduced by such mechanisms.

I. INTRODUCTION

Over the past few years, fault tolerance has become a

major concern in High Performance Computing (HPC) area.

According to [1], the broad consensus in the community is

that Exascale systems, which are expected by 2018-2022,

will be subject to errors or faults much more frequently than

current Petascale systems. The two main reasons behind this

theory are the increase of number of components necessary

to reach the scale, coupled with an increase of Mean Time

To Failure (MTTF) of each components that will unlikely

be high enough to compensate for the first reason.

In the past, most of the development efforts on fault

tolerance in HPC community has focused on the fail-stop
model, where the failed processes stop working and the cor-

responding data is lost. The large scale, and the continuous

increase of memory used by applications, have highlighted

another type of faults, known as soft errors or silent data
corruption (SDC). Soft errors usually manifests as bit-flips

in disk, memory or processor registers and are due to any of

the following causes: temperature and fluctuations, cosmic

particles, electrostatic discharge, etc. . . [2]. [3] reports that

double bit flips, which cannot be corrected by Error Cor-

rection Control (ECC), occurs daily in Oak Ridge National

Lab’s Cray XT5, and [4] states that significant soft error

rates were observed on BG/L’s unprotected L1 cache.

In critical operations, SDCs are sometimes masked using

voting techniques that require triplicating (or more) the

computations, reducing even more the overall efficiency [5].

A traditional strategy to tolerate such failures together with

fail-stop failures involves a combination of replication to

detect the occurrence of SDCs, and checkpoint/restart to

recover from a valid state if such fault is detected [6],

[7]. This technique is highly automatic but suffers relatively

high checkpointing overheads when saving data to stable

storage [8], and induces a low resource efficiency as all com-

putations must be duplicated. Duplication can be avoided

if application-specific data validation mechanisms exist to

guarantee the validity of a checkpoint [9]. However, the costs

incurred with storing the checkpoint data and restarting the

whole application once a failure is detected remain.

Today’s large scale systems, as well as the next gen-

erations, feature other sources of complexity: multicore

architectures with Non Uniform Memory Access (NUMA),

use of accelerators (GPU, manycore computing), complex

network hierarchies. They represent challenges to efficiently

execute applications at large scale. Recently, task-based

programming frameworks have emerged as a solution to

address this challenge. A task-based application represents

the algorithm as a set of tasks and data dependencies

between these tasks. A runtime system is then used to

schedule the tasks and manipulate the data based on the

data dependencies, and adapt the execution to the platform

characteristics as the algorithm unfolds.

This work proposes a fault tolerant design that provides

SDC resilience for a dynamic task-based runtime. Our goal

is to provide generic and low-overhead strategies to recover

from SDC during the execution. We focus on recovery from

application data corruption, which represents the largest part

of the data, and thus the most probable source of SDC,

and assume that information of application’s task graph, or

other critical parts are made resilient through other generic

methods (e.g. triple modular redundancy as in [10]). We

study three possible mechanisms at two levels of granularity:

at the coarse level, tasks are re-executed if needed, and at

the fine level, tasks are augmented to introduce the necessary

protection against SDC. These mechanisms support shared-

memory and distributed-memory platforms seamlessly. We

develop and implement them in the PaRSEC [11] frame-

work, which employs a data flow programming and execu-

tion model to efficiently schedule and manage micro-tasks

on distributed many-core heterogeneous architectures. We

illustrate our design on the Cholesky factorization, which

is widely used in linear least squares regression and Monte

Carlo simulations in large scale scientific applications. Ex-
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perimental results demonstrate that our design introduces

small overheads, close to the theoretical overheads, to re-

cover from soft errors.

II. BACKGROUND

This section briefly introduces the dynamic task-based

scheduling framework in PaRSEC and our strategy to im-

plement soft error resilience in PaRSEC.

A. Task-Based Scheduling using PaRSEC

Task Graphs have a long history of being used to express

task dependencies and to schedule tasks on computing

resources. In this paper, a task graph is defined as a Directed

Acyclic Graph (DAG) D = (V,E), where every vertex

v ∈ V represents a task (a set of sequential computations),

and every edge (v1, v2) ∈ E represents a data dependency

between an output of task v1 and an input of task v2. If

an edge (v1, v2) exists in E, then task v1 must complete

its execution and its output data transferred where task v2
executes before task v2 starts.

The Parallel Runtime Scheduling and Execution Con-

troller (PaRSEC) is a generic framework for architecture-

aware scheduling and management of micro-tasks on dis-

tributed many-core heterogeneous architectures. PaRSEC

consists of a runtime environment that comprises a dis-

tributed multi-level dynamic scheduler, an asynchronous

communication engine and a data dependencies engine [12].

The runtime will map the tasks on the data distribution,

detect local and remote data dependencies and use dynamic

asynchronous distributed scheduling to enable a task-based

application to reach the maximum amount of parallelism.

PaRSEC uses task graphs to represent the data flow of the

algorithm.

While most of the techniques introduced are generic, in

this paper, we will illustrate the design of fault tolerance

using the tiled Cholesky factorization [13]. This algorithm

factors an N×N , symmetric, positive-definite matrix A into

the product of a lower triangular matrix L and its transpose,

i.e., A = LLT (or A = UTU , where U is upper triangular).

We implement it using a tiled linear algebra algorithm in

which linear algebra operations are represented as a set of

tasks that operate on square blocks of data (the tiles), and

are dynamically scheduled based on the dependencies among

them and on the availability of computational resources.

Algorithm 1 describes the tiled Cholesky factorization

algorithm and Figure 1 shows the snapshot of a 4×4 matrix

at step k = 1. The algorithm is based on four computational

kernels: POTRF (Cholesky factorization), TRSM (triangu-

lar solver), SYRK (symmetric rank-k update) and GEMM
(general matrix-matrix multiplication) that each operate on a

tile (the matrix A is tiled in NT ×NT tiles of size nb×nb,
and A[m][n] represents a whole tile of A). Note that as

the Cholesky factorization operates on a symmetric matrix,

only the lower triangular part of the input matrix is stored,

as shown in Figure 1.

Algorithm 1: Tiled Cholesky Factorization Algorithm

1 for k = 0...NT − 1 do
2 A[k][k]← POTRF (A[k][k])
3 for m = k + 1...NT − 1 do
4 A[m][k]← TRSM(A[k][k], A[m][k])

5 for n = k + 1...NT − 1 do
6 A[n][n]← SY RK(A[n][k], A[n][n])

7 for m = n+ 1...NT − 1 do
8 A[m][n]← GEMM(A[m][k], A[n][k], A[m][n])
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Figure 1. Step k = 1 of a Cholesky factorization of 4x4 tile matrix.

The tiles of the matrix are distributed between the nodes

following the traditional 2D block cyclic distribution that

provides good scalability properties and satisfactory load

balancing with the “owner computes” strategy. Figure 2

illustrates an example of distributing a 4× 4 tile symmetric

matrix on a 2× 2 grid of processes.
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Figure 2. Example of a tile 2D block cyclic distribution.

Implemented in PaRSEC, the Cholesky factorization can

be modeled as a DAG of tasks. Figure 3 shows the DAG for

a 4× 4 tile matrix on a 2× 2 process grid. Each of the four

basic linear algebra operations have corresponding types of

tasks. Depending on the location of the input data, data

dependencies among tasks can be local or remote. Note that

the output of a task might overwrite its input. For example,

in Figure 3, a TRSM task overwrites the input from its

predecessor task GEMM, and a POTRF task overwrites

the input from its predecessor task SYRK.
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B. Problem Statement

SDC strikes at random moment and memory location,

normally in the form of a bit flip. Figure 3 underline how

data corruption is propagated when a SDC occurs. If this

failure happens during the execution of a TRSM task on

Node 1 (marked using a red cycle in the figure), by the end of

the application the corrupted result would have propagated

to the following 6 tasks (marked using blue cycles in the

figure), ruining in total 35% of the computations in this

example.

As stated earlier our goal was to design a solution at

the runtime level that has low overhead and is applicable

to a wide range of algorithms. One possible technique to

offer low overhead is to prevent the corrupted data from

propagating to the task’s successors, therefore the failed

task should be recovered right after the SDC happened

before it got a chance to spread the corrupted result. Due

to the use of the DAG, the recovery of a task can happen

concurrently with the execution of unaffected tasks from the

original execution, providing a maximal overlap between

the correct original execution and the ongoing recovery.

This also minimize the extra synchronizations in distributed-

memory platforms, keeping the failure free execution almost

unaltered from the original, non resilient, execution.

Algorithmic methods to mitigate the impact of SDCs on

specific applications are known. For example, in dense linear

algebra, Sherman-Morrison formula is applied to recover

from one soft error during an LU factorization, only adding

very small overhead [2]. However, these application-specific

approaches are not considered in our design because they

require the modification of each algorithm. We were tackling

the challenge of designing an independent generic strategy

that can be easily applicable to any task-based algorithm.

III. DESIGN OF FAULT TOLERANCE IN PARSEC

In this section, we describe and quantify in terms of

storage and memory overhead three mechanisms augment-

ing PaRSEC with soft error resilience. First, we introduce

two coarse level mechanisms: a sub-DAG strategy and a

sub-DAG & periodic checkpoint composite strategy; then,

we introduce the Algorithm-Based Fault Tolerance (ABFT)

strategy, a mechanism that operates at the task level. We use

N to refer the matrix size and nb to refer the tile size.

We assume that failures can be either detected by the

hardware or by internal checks of the task. Section III-C will

discuss and evaluate the impact of algorithmic techniques to

provide such detection.

A. Application Level Mechanism I: Correcting Sub-DAG
Strategy

In PaRSEC, a DAG is represented by a concise format

called Parameterized Task Graph (PTG), which expresses

the tasks and their data dependencies in an symbolic way,

Figure 3. DAG of the Cholesky factorization of a 4x4 tile matrix on a 2x2
process grid, and a possible scenario of a soft error propagation (starting
from the task surrounded by a red line).

independent of the problem size [12]. The runtime takes ad-

vantage of this representation to discover and schedule tasks

without unfolding the entire DAG in memory, reducing the

memory requirement for storing the DAG and exchanging

the computation cycles to traverse the DAG with cycles to

compute the successors of a task.

When a soft error happens, the output, and potentially

some of the input, of the failed task is corrupted. The

re-execution of the failed task requires its predecessors to

provide the input again. As the data flowing between tasks

is not saved, the predecessors need to be re-executed as well.

This backward traverse will go along the opposite direction

of the original data flow until it reaches the source task of

each of the necessary data.

Considering that the input comes from a read-only stable

storage and is not affected by soft errors, as long as the

runtime does not lose any information of the DAG, the

correct result of any task in the DAG can be recomputed.

Thus, a straightforward idea to recover from soft errors

is to reuse the original data and DAG to recompute the

missing data. Based on this idea, we exploit the capability

of PaRSEC’s PTG representation to dynamically retrieve

all the predecessors of a failed task. In this mechanism, a

failed task is replaced by re-executing a correcting sub-DAG

consisting of this task and all its predecessors. Such sub-

DAG is generated and scheduled by the runtime as soon as

a failure is detected.

Figure 4 demonstrates an example of the correcting sub-

DAG for the failed TRSM task in Figure 3. Compared with

the original DAG, this sub-DAG has been trimmed, only

keeping tasks related to re-executing the failed task. Re-
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executing the minimum required sub-DAG ensures that the

failed task and its predecessors are recomputed only once

from the original input data. Note that the recovery here is

not sequential, it will happen concurrently with the execution

of remaining tasks from the original DAG.

From an implementation perspective, when a PaRSEC

application is executed on a distributed-memory platform, all

computing nodes run the scheduling engine and each process

can parse the concise PTG representation to find information

about any tasks, including remote ones. When a failure is

discovered, the node owning the failed task globally triggers

the creation of the correcting sub-DAG by broadcasting an

recovery event to the other nodes.

Figure 4. Correcting sub-DAG for the failed TRSM task.

Although this mechanism operates at the application level,

it can be integrated into any task-based application. In the

following, we analyze the overheads of this mechanism:

The Computing Overhead is proportional to the position

of the failed task in the DAG. If the failure happens in

the early stage of the execution, that means the size of the

correcting sub-DAG is small and the computing overhead

will be relatively low. On the other hand, if the failure

happens in the late stage of the execution, the size of the

sub-DAG will be large and the computing overhead will

be relatively high. We analyze the computing overhead by

considering the algorithm.

Figure 5 shows an example when failures happen in the

middle of the Cholesky factorization. Failure can happen in

four types of tasks, and the recovery cost of the POTRF task

is minimum, as it is the predecessor of all the other three

types of tasks. We compute the overhead as the number of

additional floating point operations (FLOPs) to re-execute.

The recovery of a POTRF task takes the same amount of

FLOPs as a Cholesky factorization on the top left submatrix

that encompasses the failed POTRF task. On our example,

this is a half-size submatrix A[[0, N/2], [0, N/2]], as marked

by dark blue line in Figure 5. We use the cost of recovering

failed POTRF in Kth column as the theoretical computing

overhead. It is computed as:

FLOPOrig =
1

3
N3 FLOPExtra =

1

3
K3

OverheadComp =
FLOPExtra

FLOPOrig
= (

K

N
)3
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Figure 5. Example when a failure happens in the middle of a factorization.

Table I summarizes the computing overhead for Cholesky

when failures happen at different stages of execution. In the

failure-free case, the correcting sub-DAG is never triggered

and there is no performance penalty.

Table I
COMPUTING OVERHEAD OF SUB-DAG MECHANISM FOR CHOLESKY

FACTORIZATION.

Failure Position Beginning Middle End No Failure

OverheadComp (
nb

N
)3 12.5% 100% 0

Storage Overhead: This sub-DAG mechanism requires

extra memory as backup for the input. Thus in the worst

case, when data is not available on a stable storage initially,

another N × N symmetric, positive-definite matrix is allo-

cated and the storage overhead is 100%.

B. Application Level Mechanism II: Sub-DAG & Periodic
Checkpoint Composite Strategy

As analyzed above for the correcting sub-DAG mecha-

nism, the re-execution always starts from the source task of

the DAG because the intermediary data is not saved during

execution. The computing overhead explodes when a failure

happens in the late stages of the execution, up to 100% to

recover the final task of the factorization, meaning that the

whole application needs to be recomputed.

In this strategy, we augment the previous approach, by

adding a diskless periodic checkpoint to limit the necessary

rollback and therefore reduce the number of recomputed

tasks. To recover a failed task, only the predecessors after the

last saved intermediary data are required to be re-executed.

Every tile is treated as a checkpointing unit. We define a

checkpoint interval β, such that a process will save a copy

of each data every β updates. Checkpoint interval β can be

modeled as a function of failure rate, task execution time
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and checkpoint time [14]. The optimal value of β is not

discussed in this paper and we set it to a constant. Every

node saves its own data locally providing a fully-fledged

snapshot of the application. Checkpoint is saved to local

memory and we assume that the probability that both the

data and its checkpoint are corrupted by correlated failures

is negligible. Figure 6 shows an example when β = 2.

Figure 6. An example of combining correcting sub-DAG with periodic
checkpoint when checkpoint interval β = 2.

Computing Overhead: In this mechanism, the bound

on the computing overhead does not depend on a failure

position. Indeed, in the Cholesky factorization, the input

of any task is either the owner tile for which there was

a checkpoint at most β operations ago, or a final output of

another task, that was validated before the re-executed task

could start. Thus, any failed task output can be recovered by

re-executing at most β previous tasks on the same tile. The

number of FLOPs of a task is C · nb3, where C is 1/3 for

POTRF, 1 for TRSM, 1 for SYRK and 2 for GEMM. We

set C to 2 to provide a conservative bound when estimating

computing overhead for any task. The theoretical computing

overhead can be computed as:

FLOPExtra = β2nb3

OverheadComp =
FLOPExtra

FLOPOrig
=

β6nb3

N3

Table II summarizes the computing overhead of the

Cholesky factorization using the Sub-DAG & Periodic

Checkpoint Composite strategy. The overhead in failure free

execution is close to 0 because the cost of local memory

checkpoint is negligible.

Storage Overhead: This mechanism needs to allocate the

same size of matrix as input to store data flowing snapshot

Table II
COMPUTING OVERHEAD OF SUB-DAG & PERIODIC CHECKPOINT

MECHANISM FOR CHOLESKY FACTORIZATION.

Failure Position Beginning Middle End No Failure

OverheadComp
nb3

N3

β6nb3

N3

β6nb3

N3
≈ 0

periodically, this even if the initial data is available on a

stable storage. Thus, the storage overhead is 100%.

C. Task Level Mechanism: Algorithm-Based Fault Tolerance

The two application level mechanisms described above

take advantage of the task graph of the application to recover

from failures by re-executing the minimum necessary tasks.

A different mechanism, potentially less generic, is to use

a known task invariant to completely avoid re-execution.

This approach is based on Algorithm Based Fault Tolerance

(ABFT) techniques, with well known solutions for most

of the dense and sparse linear algebra kernels. In order

to recover from data corruption inside a task, additional

information would be attached to the data to allow error

correction if necessary.

ABFT was firstly introduced by Huang and Abraham to

detect and correct soft errors in systolic arrays [15]. ABFT

methods are based on the idea of maintaining consistency

of the computing data and recovery data, by applying ap-

propriate mathematical operations on both original data and

recovery data [16]. Typically, for linear algebra operations,

additional rows and/or columns are attached to input matrix

to maintain checksums.
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Figure 7. An ABFT matrix multiplication example.

An example of ABFT enabled matrix multiplication is

shown in Figure 7. The corresponding matrices A, B, C
have the following relationship:

A ∗B = C

A is appended with a column checksum vector eTA while

B is appended with a row checksum vector Be. It is shown

as follows that the checksum relationship for matrix C is

maintained after computation:

[
A

eTA

] [
B Be

]
=

[
AB ABe

eTAB eTABe

]
=

[
C Ce

eTC eTCe

]

In our task level mechanism, we attach column checksum

vectors to every tile in the input matrix. Note that we do
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not modify the factorization itself: the checksum applies

only to each tile. Figure 8 shows the matrix snapshot after

attaching column checksum vectors to a 4x4 tile matrix. As

a sidenote it is interesting to mention that for some tasks this

approach also provides an efficient SDC detector. In order to

detect errors in one task, one checksum vector is sufficient.

Furthermore, detecting and correcting n errors require at

least n+1 checksum vectors [17]. For example, let’s consider

an n× n matrix A = [a1, a2, ..., an] and two n vectors

e1 = (1, 1, ..., 1)T e2 = (1, 2, ..., n)T

Two column checksum vectors are defined as:

c1 = e1A c2 = e2A

Assume that an error happens at the (i, j) element of A:

a′i,j = ai,j + γ

Now we can first decide the jth column of A is inconsistent

with checksums:

α1 =

n∑
k=1

ak,j − (c1)j = γ �= 0

This provides a detector for the occurrence of a silent data

corruption. Such approach, based on a single checksum, can

be used to implement a detector for the two application level

mechanisms described above. Then we can determine the ith
element of this column causes the inconsistence:

α2 =
n∑

k=1

kak,j − (c2)j = iγ

α2/α1 = i

The value of ai,j is corrected by simply subtracting α1.
For the remainder of this paper, we consider the case of a

single soft error per execution. We simulate it by introducing

a significant bit-flip into the exponent of a floating point

data and let the runtime detect and recover the state of the

computation. It is to be noted that for some tasks, a single

soft-error when propagated through the algorithm translates

into more than one corrupted result. While the ABFT

protection scheme presented in Section III-C is unable to

correct the data in this particular case, it can be used as a

detection mechanism. In this case, the two mechanisms from

Section III-A and III-B can successfully complement the

proposed approach. In the following analysis of overhead,

we focus on the case where failures can be recovered using

an ABFT mechanism.
Computing Overhead: Using ABFT techniques, extra

FLOPs are introduced for each task for maintaining the

checksums. After attaching checksum vectors, the matrix

size becomes (1 + 2/nb)N × (1 + 2/nb)N . The number

of FLOPs of the Cholesky factorization on this new matrix

is:

FLOPNew =
1

3
((1 +

2

nb
)N)3

��������	�
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Figure 8. Attaching checksum vectors to a 4x4 tile matrix.

The cost of maintaining checksum is:

FLOPChk =
1

3
((1 +

2

nb
)N)3 − 1

3
N3

The computing overhead of maintaining checksums is:

OverheadChk =
FLOPChk

FLOPOrig
= (1 +

2

nb
)3 − 1

The extra FLOPs of correcting error in one task come

mostly from using matrix vector multiplication to add el-

ements in the same column together to detect failures,

which is 2nb2. We plug this matrix vector multiplication

into routines of POTRF, TRSM, SYRK and GEMM to

detect failures from any possible task during execution. If

one failure is detected, only nb floating point operations are

required to locate the error position and only one FLOPs

is required to add the error back to the corrupted matrix

element. These nb+ 1 operations are negligible comparing

with the large amount of operations in maintaining check-

sums and detecting errors and are discarded in overhead

estimation. There are approximately (N/nb)3/6 tasks in

Cholesky factorization, thus we estimate the total cost of

correcting error as:

FLOPCorr =
N3

3nb

The computing overhead of correcting error is:

OverheadCorr =
FLOPCorr

FLOPOrig
=

1

nb

The total computing overhead of this mechanism is:

OverheadComp = OverheadChk +OverheadCorr

= (1 +
2

nb
)3 − 1 +

1

nb

The task level mechanism recovers the data without re-

executing any task in the DAG, thus the recovery overhead

does not depend on the failure position in the DAG. As

shown in Table III, the performance penalty remains the

same for failure-free execution as checksum vectors have

been encoded into the original matrix.
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Table III
COMPUTING OVERHEAD OF ABFT MECHANISM FOR CHOLESKY

FACTORIZATION.

One Failure No Failure

OverheadComp (1 + 2
nb

)3 − 1 + 1
nb

(1 + 2
nb

)3 − 1 + 1
nb

Storage Overhead: The ABFT mechanism requires allo-

cating extra memory to store checksum vectors. For every

nb × nb tile, the size of checksum vectors is nb × 2, thus

the total storage overhead is 2/nb. In tiled dense linear

applications, the tile size is tuned to optimize the efficiency

of the operation and the parallelism of the application. This

often translates in nb in hundreds, which make the extra

memory requirement of storing checksum vectors negligible.

IV. EXPERIMENTAL RESULTS

A. Experiment Setup

We use the Titan supercomputer at Oak Ridge National

Laboratory as our testing platform. Titan has 18, 688 nodes

with Cray custom high-speed interconnect, each node con-

tains a 16-core AMD Opteron 6274 CPU with 32 GiB of

DDR3 ECC memory and an Nvidia Tesla K20X GPU with 6

GiB GDDR5 ECC memory. We only use the CPU section of

Titan and 8 CPU cores per node since each node possesses

8 floating point units.

At the software level, we use GCC 4.8.2 as compiler

and Cray LibSci 12.2.0 to provide basic linear algebra

subroutines (BLAS). The Cholesky factorization is imple-

mented in double precision with tile size nb = 200 that

was tuned to reach the highest performance of the GEMM
operation, while still allowing a large amount of parallelism

at reasonable matrix sizes. To serve as a comparison base,

we use the standard Cholesky factorization implemented in

PaRSEC without any soft error resilient mechanisms.

We pursue weak scalability experiments to evaluate the

capability of the proposed fault tolerant strategies to handle

potentially larger problems when more computing resources

are available. For these experiments, we fix the memory used

on each node and increase the matrix size accordingly when

we increase the number of nodes. We set the matrix input

size for single-node experiments to 6000, and scale it with

6000
√
P where P is the number of nodes.

Failures are injected as single bit-flip inside one task

during the execution. The failure triggers when the Cholesky

factorization reaches the middle column of the matrix (as

indicated in the Figure 5). In all experiments reported in this

section, we take 5 runs and report the average (arithmetic

mean) number. Standard deviations are shown using error

bars.

B. Performance of Correcting Sub-DAG Mechanism

Figure 9 shows the performance and overhead of the

Cholesky factorization with the correcting sub-DAG mecha-

nism on Titan when one failure happens in the execution. We

Figure 9. Weak scalability of correcting sub-DAG mechanism compared
to non fault tolerant Cholesky.
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Figure 10. Number of total tasks of the correcting sub-DAG mechanism
in failure-free and one-failure cases.

inject the failure in four types of task separately. For now,

we assume that the failure was detected with an abstract

mechanism of zero cost. The red curve is the performance

of non fault tolerant Cholesky using standard PaRSEC. It has

the same performance as fault tolerant version in failure-free

execution since there is no sub-DAG created as analyzed

in Section III-A. The theoretical overhead is 12.5%, as

computed from Table I (as explained, this is the cost of

computing a Cholesky factorization on a matrix of half size).

We can see that the overheads of all four one-failure cases

are around 15% and close to theoretical overhead.

Figure 10 shows the number of total tasks of the correcting

sub-DAG mechanism in different cases. It indicates that

the number of re-executed tasks for four types of tasks is

very close. Recovering from failures in POTRF requires the

fewest tasks since POTRF is on the critical path of DAG

and is the predecessors of the other three types of tasks.

771



Figure 11. Weak scalability of correcting sub-DAG & periodic checkpoint
composite mechanism compared to non fault tolerant Cholesky.

C. Performance of Correcting Sub-DAG & Periodic Check-
point Composite Mechanism

Figure 11 shows the performance and overhead of the

Cholesky factorization with the correcting sub-DAG & pe-

riodic checkpoint composite mechanism on Titan when one

failure happens during the execution. As before, we do not

consider yet the mechanism used to detect the failure in this

experiment. The checkpoint interval β is set to 10, i.e. the

state of a tile is saved to memory locally after 10 tasks update

the tile. Since periodic checkpoint protects the data on every

tile and the upper bound of recovering from corruption is

re-executing 10 tasks for any type of tasks, we inject the

failure in one GEMM task. Recovering from corruption in

the other three tasks have similar overheads. Based on the

discussion in Section III-B, the theoretical overhead of one-

failure case is close to 0. We can see that the overhead of the

failure-free case has a variability of about 1%, and the one-

failure case fluctuates around 2%. Both numbers are in the

noise of the measurement. These results validate our analysis

that diskless checkpoint reduces the number of re-executing

tasks drastically and the time spent to save critical snapshots

of data flowing remains negligible.

D. Performance of ABFT Mechanism

Figure 12 presents the performance and overhead of

Cholesky factorization with task level fault tolerant support

using ABFT technique on Titan. ABFT implements at the

same time a detection mechanism and the correction method.

Each task of the entire DAG is thus validated at completion,

and corrective actions are initiated only of this validation

fails. For the one-failure case, we inject the failure in one

GEMM task, and the erroneous matrix element will not

be propagated inside the task thus it can be recovered

using checksums. The theoretical overhead is obtained from

Table III. The results show that the overhead of failure-free

case and one-failure case fluctuates around 5%, and does

Figure 12. Weak scalability of ABFT mechanism compared to non fault
tolerant Cholesky.

not increase when application size and number of nodes

increase, and remains close to the theoretical overhead. Also,

it is important to note that the difference between failure-free

overhead and one-failure overhead is negligible. Compared

with failure-free case, only nb more FLOPs are required to

locate the error position and only one FLOP is required to

add the error back to the corrupted matrix element. These

extra nb + 1 operations are negligible considering the total

number of FLOPs is (1/3)N3 in the Cholesky factorization.

Compared with the previous two application level mech-

anisms, this task level mechanism has higher overheads in

fault-free case because of the cost of maintaining checksums

and failure detection. At the contrary, the additional cost to

recover from failures is very small in task level mechanism

since it does not require task re-execution.

E. Overhead of Detection Mechanism
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Figure 13. Performance and overhead of using ABFT as a Detection
Mechanism for the correcting sub-DAG approach without failures and with
one failure.

For the first two application level mechanisms we assumed

that a SDC detector was available for a 0 cost. In normal
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conditions this assumption is overly optimistic. Thus, for

algorithms exhibiting ABFT properties, the ABFT tech-

niques can be used to provide accurate and effective SDC
detectors. Figure 13 presents the performance of a Cholesky

Factorization using the correcting sub-DAG technique on

60k matrix using 100 nodes, and highlights the cost and

overhead of using ABFT on a single checksum for each

tile to implement the SDC detection mechanism. Detection

cost comes from FLOPs in maintaining the checksum and

validating results. This cost is paid on each task, regardless

if it is a task of the original DAG, or a task of the correcting

sub-DAG. The results validate that if ABFT detector is

enabled, the overhead cost can increase up to 6%.

V. RELATED WORK

Soft errors become more prevalent with new technologies

that feature higher clock frequencies, increased transistor

density and lower voltage [5]. While large scale machines

are often equipped with hardware mechanisms for resilience,

they do not provide an integrated approach in system level

to ensure fault tolerance for applications. Pioneering works

addressing soft errors in large scale applications can be

classified into the following four categories.

Checkpoint/Restart: The major advantage of the Check-

point/Restart technique is its generality, as it can be applied

to all applications. As a representative system, Charm++ em-

ploys an automatic Checkpoint/Restart framework that per-

forms application replication to provide fault tolerance [18].

The checkpoint period is decided by online information

about current failure rate. Our approach avoids using co-

ordinated checkpoint thus provides much less overhead.

MPI Level Fault Tolerance: In MPI applications, soft

errors can be detected by comparing MPI messages between

process replicas. The RedMPI library creates “replica” MPI

tasks for each “primary” task and performs online MPI

message verification intrinsic to existing MPI communica-

tion [7]. Our approach does not require process replication.

Algorithm Based Fault Tolerance: Algorithm Based

Fault Tolerance does not require disk accesses thus is low-

overhead in nature. This technique has been widely adapted

in dense linear algebra, for example, Sherman-Morrison

formula is applied after LU factorization to recover soft

errors for dense linear system solver [2]. FT-ScaLAPACK

library modifies LU, QR and Cholesky factorizations in

ScaLAPACK with blocked algorithms to detect and correct

soft errors during computation [17]. Our method is more

generic. At the application level, the user is not required to

change the application to support fault tolerance, while at the

task level, as a decomposed unit from the application, the

additional effort and computational and memory overheads

become significantly more reasonable.

Fault-tolerant Task-based System: Many task-based

runtimes have integrated fault tolerant capabilities to support

their applications. Task scheduling can be static or dynamic,

depending on whether an application’s task graph is known

before computation starts [19]. In static scheduling, tasks are

allocated to processors or computing nodes ahead of time.

In such systems, task duplication has been introduced to

protect applications from failures in grids [20] and in real-

time systems [21]. The requirement of doubling the number

of protected tasks impacts the application performance in

absence of failure. In dynamic scheduling, on the other side,

tasks are allocated to processors during the computation.

This requires the runtime to schedule the recovery efficiently

to reach optimal performance when a failure happens.

Tremendous progress has been made to add resilience

to dynamic task-based systems. Mouallem et al. proposed

three fault tolerant mechanisms in Kepler scientific work-

flow system, including forward recovery using retries and

alternative versions, checkpointing and adding a Error Han-

dling Layer [22]. The goal of fault tolerance framework

in workflow system is to provide an appropriate end-to-

end support for detecting and recovering from failures

during execution, while the goal of our design is targeted

to a low-overhead solution. A fault-tolerant dynamic task

graph scheduling algorithm is implemented in the NABBIT

system, which recovers from soft errors via task re-execution

and work-stealing [23]. Scalable and low-overhead Check-

point/Restart and task replication schemes are integrated in

the Nanos asynchronous data-flow runtime which supports

OpenMP programming model [24]. However, these two

runtime systems only provide reliability for applications on

shared-memory platforms, while our design supports shared-

memory and distributed-memory platforms seamlessly. An

improved coordinated checkpoint protocol is implemented

in KAAPI framework to reduce the number of processes

that are required to redo computation by utilizing the com-

munication dependencies [25]. While this scheme requires

global synchronization for all processes in checkpointing,

our design avoids global synchronization.

VI. CONCLUSION AND FUTURE WORK

This paper describes three possible mechanisms designed

for a dynamic task-based runtime, for handling soft-errors.

The proposed extensions ensure resilience at two different

levels of granularity: coarse granularity, automatic solutions

at the application level and fine granularity, algorithm-

based solutions at the task level. At the application level,

a correcting sub-DAG mechanism is used to recover from

failures by re-executing only required tasks to retrieve the

lost data. A composite mechanism combining sub-DAG

with periodic diskless checkpoint saves critical snapshots

of the data flowing between tasks during the execution

to reduce the amount of necessary re-executions, address-

ing one of the major issues with traditional application-

level checkpoint/restart strategies. These two application-

level mechanisms are generic and can support any task-based

application, providing an automatic application-independent
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failure management mechanism. As task-based approaches

decompose the application into smaller and less complex

tasks, it become possible to take advantage of the intrinsic

algorithm properties of these tasks to provide validators

allowing to detect, and possibly recover, from soft-errors.

Additionally, we presented a SDC detector applicable to any

algorithms exhibiting similar ABFT properties (as described

by Huang and Abraham [15]), that can successfully replace

a hardware-level fault detector while providing means to

quickly and accurately recover the data. Our experimental

evaluation on a large scale platform, Titan, corroborate the

feasibility of the proposed approaches and highlight the low

overhead of the current implementation in PaRSEC. In the

future work we will explore methods to provide transparent,

or algorithm-based solutions to the fail-stop model in task-

based runtimes.
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